
Defense Evasion
- Malware In Bitmap

...focus on cybersecurity

Whitepaper



Defense Evasion - Malware In Bitmap

Defense Evasion consists of techniques that adversaries use to avoid detection throughout their 
compromise. Techniques used for defense evasion include uninstalling/disabling security software 
or obfuscating/encrypting data and scripts. Adversaries also leverage and abuse trusted processes 
to hide and masquerade their malware. In this report, we focus on how we uncover latest 
obfuscation / masquerading techniques that involve hidden payload in image with bitmap extension

Delivering payloads through Images - Use cases

Because the BMP file format is an uncompressed graphics file format, this gives malicious actors the 
possibilities of injecting various payload and script into it.

The study of the structure of a PNG image also revealed possibilities of encoding web shells, XSS 
payloads into the PNG IDAT chunks.

In 2019, polyglot images were used to hide malvertising attacks by some hacking group.

Of recent, Lazarus APT group is known to employ new techniques and custom toolsets in its 
operations to increase effectiveness of it attacks, and in one of their new campaign, they resorted 
to an interesting technique of BMP files embedded with malicious HTA objects to drop its loader.

Report from Cisco Talos new research also revealed that cybercriminals are now deploying remote 
access Trojans (RATs) under the guise of seemingly innocuous images hosted on infected websites, 
once again highlighting how threat actors quickly change tactics when their attack methods are 
discovered and exposed publicly

Extracting & Analyzing payload from BMP

Our goals here is to extract the payload from the identified malicious BMP file, execute it in a sandbox 
and capture the C2 of the malicious payload hidden within the image.

Steps taken:

Identify malware type

Extract the malware and Execute in a sandbox!

Examine communication initiated by the malware

...focus on cybersecurity

w w w . c y b e r p l u r a l . c o m



Identifying the malware type!

This was straightforward, we decided to run the file through VT and it gave us these results.

Seeing as most of these results identify it as a "Generic Metasploit Exploit", we can assume the 
malware embedded in the image is in-fact a Metaploit payload.

Extract the malware and Execute in a sandbox!

To extract a piece of malware, first we need to locate where it is hidden. But this is a simple task as 
it is evident where it resides.

...focus on cybersecurity

w w w . c y b e r p l u r a l . c o m



...focus on cybersecurity

w w w . c y b e r p l u r a l . c o m

At the bottom of this section of the image, you'll notice multi-coloured pixels, these pixels are raw binary
data encoded into RGB and stored in the image, thus a color of purple will be decoded to the binary 
sequence 0xff 0x00 0xff.

With this in mind, a script was written to extract the payload and dump it in its binary form.

This script implements the following algorithm, "for each non-white pixel at the bottom of this image, 
convert its RGB values to bytes and print them out". Which gives us what we have in the image below!

And when disassembled, it gives us this code.



Now that we have the malware, we can examine it.

This is where we hit our first roadblock, the malware has no evident IP string in the code which means 
one of two things.

...focus on cybersecurity

w w w . c y b e r p l u r a l . c o m



...focus on cybersecurity

w w w . c y b e r p l u r a l . c o m

The IP is stored as a list of numbers

The binary is encoded

After some research, we came to the conclusion that the file was encoded using the "shigata ga nai" 
payload encoder for Metasploit which uses rolling keys to decode itself multiple times before executing. 
With this information, we tried using shell-code decoders that emulate the program and dump its 
memory.

After the first two successful cycles of decoding, our decoder crashes with the error "Invalid opcode" 
which signifies that the result of the previous cycle is not a valid binary.

This is where we broke off from the conventional/recommended method of solving the problem and 
decided to think of our own solution.

Execute the malware in a sandbox!

The thought was, "If we can't force it to decode itself then we should let it do so naturally". Thus we found
a script that executed malware embedded in images and gave it a go.

Its name is "NativePayload_Image.cs", it is a C# script that extracted the payload similar to our python 
script but then executes the script by changing its own instruction pointer to the beginning of the payload, 
forcing the kernel to execute it as part of the script.

We started a Windows command prompt with the command "wine64 cmd" and executed the
"NativePayload_Image.exe" once more.



...focus on cybersecurity

w w w . c y b e r p l u r a l . c o m

Examine communication initiated by the malware

While all this was running, we set up Wireshark in the background to monitor all communication and after 
a few seconds of listening, we terminated the malware and examined the packets.

We used the filter, tcp.port == 4444 to filter all non-Metasploit payload communication as port 4444 is the 
default port for all communication on Metasploit TCP payloads.

This resulted in us getting the IP address of the C2 server.

The payload communicates to the IP 217.182.54.224 on port 4444 but seeing as all SYN packets were not
acknowledged, the server is down and the threat is no longer active.

Further Analysis of C2 IP

IP was further analyzed which reveal detection of 4 malicious files communicating with it



...focus on cybersecurity

w w w . c y b e r p l u r a l . c o m

Detected Files Hashes - SHA 256

3b66ae16fb01dcd20dd62e46c875de12aefafc18e76e03b251bade70757ff34b
ef4bc0076b35dc49febf4ea203891fa60e3b7da5ab93a8d92e16ade0c05a1ec5
10701b2debf74c30559bff2a7dbdf32e8225a648d661e77bd34cb4f205d000bd
3366222f99dd758e5e46382126348f566d38923f30d6b964908432778b5c2326

Conclusion

These and many other approaches are clever methods used by threat actors to bypass security 
mechanisms that can detect embedded objects within images.

To this end, we advise individuals and businesses to ensure security controls such as Endpoint Detection 
and Response (EDR) are installed on all critical systems in their environment to protect and provide early 
detection against all these deceptive tactics and techniques that are currently use by adversaries. For 
more technical information around deployment of security controls, and other managed security services, 
contact CyberPlural.



...focus on cybersecurity

Whitepaper

Contact
+234 701 470 2005
hello@cyberplural.com

Office
Suite 212, Haramani Plaza, 
Shettima Monguno, Cresent
Utako, Abuja, FCT.

@Cyberplural

w w w . c y b e r p l u r a l . c o mVisit our website


